23 research outputs found

    Numerical investigation of gas explosion phenomena in confined and obstructed channels

    Get PDF
    Mining, process and energy industries suffer from billions of dollars of worldwide losses every year due to Vapour Cloud Explosions (VCE). Moreover, explosion accidents are often tragic and lead to a high number of severe injuries and fatalities. The VCE scenario is complex and controlled by various mechanisms. The interplay among them is still not entirely understood. Understanding all these intricate processes is of vital importance and requires detailed experimental diagnostics. Coupling accurate numerical simulations to well documented experiments can allow an elaborate description of these phenomena. This thesis focuses on explosions occurring on configurations that are either semi-confined or confined. In such configurations, the explosion is generally initiated by a mild ignition and a subsonic flame front emerges from the ignition source. An important feature of self-propagating flames lies in their intrinsically unstable nature. When they propagate in an environment with high levels of confinement and congestion, which is the case in most industrial sites, a Flame Acceleration (FA) process is often observed that can give rise to very fast flames, known for their destructive potential. In some cases, the FA process can create the appropriate conditions for the initiation of detonations, which corresponds to a rapid escalation of the explosion hazard. To reproduce the confinement and congestion conditions that one can find in industrial sites, the university of Munich TUM equipped a confined chamber with a series of obstacles and analysed the influence of repeated obstructions on the propagation of hydrogen/air deflagrations. This experimental study showed a strong influence of the mixture composition on the acceleration process. A Deflagration to Detonation Transition (DDT) has also been observed for a certain range of equivalence ratio. This configuration is therefore ideal to study the mechanisms of flame acceleration as well as the intricate DDT process. A numerical study of both scenarios is performed in this thesis: -First for a lean premixed hydrogen/air mixture, a strong flame acceleration is observed experimentally without DDT. The characteristic features of the explosion are well reproduced numerically using a Large Eddy Simulation (LES) approach. The crucial importance of confinement and repeated flame-obstacle interactions in producing very fast deflagrations is highlighted. -DDT is observed experimentally for a stoichiometric hydrogen/air mixture. This thesis focuses on the instants surrounding the DDT event, using Direct Numerical Simulations (DNS). Particular attention is drawn to the impact of the chemistry modelling on the detonation scenario. The failure of preventive measures is often observed in many explosion accidents. To avoid a rapid escalation of the explosion scenario, mitigative procedures must be triggered when a gas leak or an ignition is detected. Metal salts (like potassium bicarbonate and sodium bicarbonate) have received considerable attention recently because well-controlled experiments showed their high efficiency in inhibiting fires. The last part of the thesis focused on the mechanism of flame inhibition by sodium bicarbonate particles. First, criteria based on the particle sizes are established to characterize the inhibition efficiency of the particles. Second, two dimensional numerical simulations of a planar flame propagating in a stratified layer of very fine sodium bicarbonate particles showed that under certain conditions these powders can act as combustion enhancers. These results echo a number of experimental observations on the possible counter-effects of the inhibitors

    Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles

    Get PDF
    The capacity of sodium bicarbonate (NaHCO3)s powder to chemically reduce flame speeds and mitigate the effects of accidental explosions is well established. The inhibition of premixed hydrocarbon/air flames by monodisperse (NaHCO3)s solid particles is investigated, here, using theory and numerical simulations. First, an analytical solution for the temperature history of a solid (NaHCO3)s particle crossing a flame shows that the size of the largest (NaHCO3)s particle which can decompose inside the flame front, and act on chemical reactions efficiently, strongly depends on the flame speed. For various fuels and a wide range of equivalence ratios, particles with a strong potential for flame inhibition are identified: hence a criterion, on the maximum particle size, for efficient inhibition is proposed. Thereafter, a one-dimensional methane/air flame traveling in a premixed gas loaded with sodium bicarbonate is simulated using a chemical mechanism based on GRI-Mech, extended to include inhibition chemistry and reduced to 20 species with a DRGEP method (Pepiot-Desjardins and Pitsch, 2008). Inhibitor particle size and mass loading are varied to study the flame response to inhibition by (NaHCO3)s powders. Finally, two-dimensional simulations of a planar flame traveling in a flow with a non-uniform inhibitor mass loading distribution are analyzed. In the case of strong particle stratification, an acceleration of the flame is observed, instead of a mitigation. This fundamental mechanism may limit the actual potential of inhibition powders in real configurations

    Fully explicit formulae for flame speed in infinite and finite porous media

    Get PDF
    This work proposes new analytical expressions for gaseous flames in inert porous media, based on the existing modelling strategies. The central hypothesis is that interphase heat transfer has negligible impact on the local flame structure. This requires a gradual separation between the length scales of chemical reactions, gas diffusion, and interphase thermal re-equilibriation. By resolving the gas and solid equations without reaction on each side of the reaction sheet, the preheating of the fresh gases ahead of the flame front is analytically computed at leading order. Combustion kinetics are solved separately, assuming the consumption rate to be a sole function of this preheating. Two kinetic models are considered, namely, single-step Arrhenius and power law fits from experiments or detailed computations. Several fully explicit formulae for flame speed in porous media are given accordingly. A universal abacus provides the maximum flame speed attainable in finite porous media. The explicit, ready-to-use nature of the present theory is particularly suitable for practical designs. This work is consistent with previous theoretical, numerical and experimental trends of the literature

    Influence of kinetics on DDT simulations

    Get PDF
    Deflagration to Detonation Transition (DDT) is an intricate problem that has been tackled numerically, until recently, using single-step chemical schemes. These studies (summarized in Oran and Gamezo, 2007) [1] showed that DDT is triggered when a gradient of reactivity forms inside a pocket of unreacted material. However, recent numerical simulations of hydrogen/air explosions using detailed reaction mechanisms (Liberman et al., 2010; Ivanov et al., 2011) [2], [3] showed that detonation waves can emerge from the flame brush, unlike what was usually seen in the single-step simulations. The present work focuses on chemistry modeling and its impact on DDT. Using the idealized Hot Spot (HS) problem with constant temperature gradient, this study shows that, in the case of hydrogen/air mixtures, the multi-step chemical description is far more restrictive than the single-step model when it comes to the necessary conditions for a hot spot to lead to detonation. A gas explosion scenario in a confined and obstructed channel filled with an hydrogen/air mixture is then considered. In accordance with the HS analysis, the Zeldovich’s (1970) mechanism [4] is responsible for the detonation initiation in the single-step case, whereas another process, directly involving the deflagration front, initiated DDT in the complex chemistry case. In the latter, a shock focusing event leads to DDT in the flame brush through Pressure Pulse (PP) amplificatio

    Time scale analysis of the homogeneous flame inhibition by alkali metals

    Get PDF
    A time scale analysis of the homogeneous flame inhibition problem is carried out to identify the main param- eters controlling the gas phase chemical interaction of the alkali metal inhibitors with the flame chemistry. First, kinetic sub-models for the interaction of alkali metals with the flame are analyzed to show that a simplified 2-step inhibition cycle can capture the essential features of this interaction. Second, it is shown that this cycle is auto-catalytic, which explains the high efficiency of alkali metals in inhibiting flames even at low concentrations. Third, the time scales associated to this inhibition cycle are linked to the free flame termina- tion time scale via a non-dimensional parameter characterizing the efficiency of an inhibitor at promoting radical scavenging. It is shown that this parameter accounts for the main trends observed in the literature and can also be used to provide estimates for the chemical flame suppression limit

    Analysis of the essential oils of Salvia Libanotica and Origanum Syriacum

    Get PDF
    ABSTRACT Essential oils (EO's) of Salvia libanotica and Origanum syriacum grown in Lebanon were extracted by two different techniques; hydrodistillation and cold solvents extraction using different solvents systems according to their polarity. The essential oil was analyzed using GC/MS. The results identified 35 constituents in each of Salvia Libanotica and Origanum syriacum extracts

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Etudes des phénomènes d'accélération de flammes, transition à la détonation et d'inhibition de flammes

    No full text
    Les incidents d'explosions intervenant sur les sites industriels sont souvent accompagnés de dégâts matériels et humains importants. Les dégâts varient d’une explosion à une autre, suggérant l’existence de mécanismes capables d’aggraver le scénario d’explosion. Réduire les risques d'explosion nécessite une compréhension fine des différents mécanismes mis en jeu. Avec l’augmentation considérable de la puissance de calcul, la simulation numérique est devenu une approche incontournable pour l’étude et la compréhension de ces scénarios. Cette thèse se focalise sur les explosions de gaz initiées par un noyau de flamme subsonique. Lorsque la flamme se propage dans un environnement offrant un haut niveau de confinement et d’obstruction, ce qui est souvent le cas des sites industriels, une forte accélération de la flamme est généralement observée, accompagnée d’une augmentation de la pression. Dans certains cas, l’accélération de la flamme peut conduire à l’initiation d’une onde de détonation. Ce scénario coïncide avec une augmentation brutale de la surpression et donc une aggravation des dégâts observés. Pour reproduire des conditions de confinement et d’obstruction représentatives des sites industriels, l’université de Munich TUM a équipé une chambre confinée de 5.4m de long d’une série d’obstacles et analysé l’impact de ces obstructions sur la propagation de déflagrations hydrogène/air. Cette étude expérimentale a montré une forte influence de la richesse du mélange sur l’accélération de la flamme. Une transition à la détonation est notamment observée pour une certaine gamme de richesse. Cette configuration est donc idéale pour étudier les mécanismes d’accélération de flamme ainsi que les conditions qui peuvent mener à l’initiation de détonations. Une étude numérique des deux scénarios a été menée mêlant simulations directes (DNS) et simulations aux grandes échelles (LES):-Pour un mélange d’hydrogène/air pauvre, une forte accélération de la flamme est observée expérimentalement sans transition à la détonation. Les grandeurs caractéristiques de l’explosion ont été reproduites avec des simulations aux grandes échelles (LES). Plusieurs mécanismes d’accélération de flamme ont été identifiés et attribués au haut niveau de confinement et de congestion dans la chambre. Le couplage de ces mécanismes explique les grandes vitesses de propagation observées. -Pour un mélange stoechiométrique, une transition à la détonation est observée. Cette thèse s’est focalisée sur les instants précédant l’initiation de la détonation afin de caractériser les conditions nécessaires pouvant mener à cet événement soudain, en se basant sur une approche de simulation directe (DNS). Une attention particulière a été portée à l’influence du schéma cinétique sur ce scénario. Comme constaté dans bon nombre d’incidents industriels, les mesures préventives peuvent échouer. Le cas échéant, des procédures visant à contrôler l’impact des explosions doivent être utilisées pour éviter une catastrophe de grande ampleur. L’utilisation d’inhibiteurs chimiques est une technique qui a déjà fait ses preuves contre les feus. Elle consiste à injecter des poudres capables de réagir chimiquement avec la flamme et de réduire son taux de dégagement de chaleur. L’étude de l’interaction de ces particules solides avec la flamme correspond au deuxième volet de cette thèse. Un modèle simplifié de décomposition de ces particules solides (HetMIS) a été développé dans un contexte LES. Deux aspects ont été explorés : 1) l’interaction unidimensionnel flamme/particule a permis d’établir un critère, basé sur la taille des particules, caractérisant l’efficacité des poudres dans le processus d’inhibition; 2) l’effet de la distribution spatial des particules sur la propagation de la flamme est analysé dans le but d’apporter une explication à certains résultats expérimentaux révélant un effet opposé des inhibiteurs dans certaines conditions.Mining, process and energy industries suffer from billions of dollars of worldwide losses every year due to Vapour Cloud Explosions (VCE). Moreover, explosion accidents are often tragic and lead to a high number of severe injuries and fatalities. The VCE scenario is complex and controlled by various mechanisms. The interplay among them is still not entirely understood. Understanding all these intricate processes is of vital importance and requires detailed experimental diagnostics. Coupling accurate numerical simulations to well documented experiments can allow an elaborate description of these phenomena. This thesis focuses on explosions occurring on configurations that are either semi-confined or confined. In such configurations, the explosion is generally initiated by a mild ignition and a subsonic flame front emerges from the ignition source. An important feature of self-propagating flames lies in their intrinsically unstable nature. When they propagate in an environment with high levels of confinement and congestion, which is the case in most industrial sites, a Flame Acceleration (FA) process is often observed that can give rise to very fast flames, known for their destructive potential. In some cases, the FA process can create the appropriate conditions for the initiation of detonations, which corresponds to a rapid escalation of the explosion hazard. To reproduce the confinement and congestion conditions that one can find in industrial sites, the university of Munich TUM equipped a confined chamber with a series of obstacles and analysed the influence of repeated obstructions on the propagation of hydrogen/air deflagrations. This experimental study showed a strong influence of the mixture composition on the acceleration process. A Deflagration to Detonation Transition (DDT) has also been observed for a certain range of equivalence ratio. This configuration is therefore ideal to study the mechanisms of flame acceleration as well as the intricate DDT process. A numerical study of both scenarios is performed in this thesis: -First for a lean premixed hydrogen/air mixture, a strong flame acceleration is observed experimentally without DDT. The characteristic features of the explosion are well reproduced numerically using a Large Eddy Simulation (LES) approach. The crucial importance of confinement and repeated flame-obstacle interactions in producing very fast deflagrations is highlighted. -DDT is observed experimentally for a stoichiometric hydrogen/air mixture. This thesis focuses on the instants surrounding the DDT event, using Direct Numerical Simulations (DNS). Particular attention is drawn to the impact of the chemistry modelling on the detonation scenario. The failure of preventive measures is often observed in many explosion accidents. To avoid a rapid escalation of the explosion scenario, mitigative procedures must be triggered when a gas leak or an ignition is detected. Metal salts (like potassium bicarbonate and sodium bicarbonate) have received considerable attention recently because well-controlled experiments showed their high efficiency in inhibiting fires. The last part of the thesis focused on the mechanism of flame inhibition by sodium bicarbonate particles. First, criteria based on the particle sizes are established to characterize the inhibition efficiency of the particles. Second, two dimensional numerical simulations of a planar flame propagating in a stratified layer of very fine sodium bicarbonate particles showed that under certain conditions these powders can act as combustion enhancers. These results echo a number of experimental observations on the possible counter-effects of the inhibitors
    corecore